

Claim amendments

1. A cooking system positionable on a support surface, the cooking system comprising:
a housing having a hollow interior chamber including an internal cooking chamber for receiving a food item;
at least one radiative heating element arranged within said hollow interior and operable to heat said cooking chamber;
a fan shroud mounted within said hollow interior, wherein said fan shroud forms a partition that separates said cooking chamber from a convective chamber (claim 19 limitation), the convective chamber being in fluid communication with said cooking chamber (claim 18 limitation), and
a convection heater disposed within said convection chamber (claim 18 limitation) said hollow chamber and operable to heat said cooking chamber, and
a plurality of openings that extend between a floor and a ceiling of the hollow interior along both sides of the fan shroud, said openings are arranged such that airflow from said convection chamber is evenly distributed to said internal cooking chamber (new limitation supported by [0059] and FIG.1) and raise the pressure within said convective chamber without negatively impacting the overall air flow rate (new limitation supported by [0056]);
wherein the cooking system is operable in a convection cooking mode, and during said convection cooking mode said at least one radiative heating element is selectively energized.

Amendments to the Claims

Several changes have been made to the status of the claims in the application. Specifically, Claim 1 has been amended, and Claims 18 and 19 have been withdrawn. These amendments are fully supported by the original specification and drawings of the application as-filed, particularly in paragraphs [0056] and [0058].

It is important to note that there has been no dedication to the public or abandonment of any unclaimed subject matter. Additionally, there has been no acquiescence to any rejections or objections. The applicant reserves the right to pursue protection of any excluded subject matter in future continuation or divisional applications.

Lastly, it is confirmed that no new matter has been added in these amendments.

Patentability of Claim 1 Over the Prior Art

The rejection of Claims 1-3, 7-9, 12, and 18-22 under 35 U.S.C. § 102(a)(1)/(a)(2) based on U.S. Patent No. 3,984,578 to Rohrl ("Rohrl") is fundamentally flawed and must be reconsidered. Claim 1, as presently amended, is distinct and patentable over the cited prior art.

Claim 1 recites a fan shroud mounted within the hollow interior of a cooking apparatus. This fan shroud forms a partition that separates the cooking chamber from a convective chamber, the

latter being in fluid communication with the cooking chamber. Moreover, Claim 1 specifies that a convection heater is disposed within the convective chamber and is operable to heat the cooking chamber. Crucially, Claim 1 introduces a plurality of openings that extend between the floor and ceiling along both sides of the fan shroud. These openings are designed to ensure that airflow from the convective chamber is evenly distributed to the cooking chamber, thereby raising the pressure within the convective chamber without negatively impacting the overall airflow rate. These novel features are supported by the application's detailed description and figures, particularly in paragraphs [0056] and [0059], as well as FIG. 7.

Rohrl discloses a cooking system comprising a housing (muffle 11) that includes a hollow chamber and an internal cooking chamber (cooking space 10) designed for receiving food items. Within this system, a radiative heating element (grill heater 16) and a convection heater (annular electric air heater 27) are arranged to heat the cooking chamber. While Rohrl describes an apparatus operable in a convection cooking mode, with heated air circulated by a fan wheel 21 and controlled by an associated control system, it fails to disclose or suggest the specific structural and functional features recited in Claim 1.

The fan shroud in Claim 1 is designed to achieve precise control of airflow and pressure management. The openings or vents extend between the floor and ceiling of the interior housing, ensuring an even distribution of airflow across the cooking chamber. This design prevents hotspots and enhances cooking uniformity. In contrast, Rohrl's baffle plate, as disclosed, is smaller than the interior of the cooking space and creates a narrow peripheral gap through which heated air is blown by the fan wheel. This basic air distribution function is fundamentally different from the precise control and even distribution achieved by the fan shroud in Claim 1.

Furthermore, the baffle plate in Rohrl does not extend from the top wall to the bottom wall of the cooking space, nor does it include openings that extend the full height of the fan shroud. The airflow in Rohrl is directed through the narrow gaps around the baffle plate, which is a simpler and less effective method of air distribution compared to the detailed structure and functionality described in Claim 1.

In summary, Rohrl does not disclose, teach, or suggest the claimed features of Claim 1. The fan shroud's structure, its openings extending the full height of the shroud, and the resultant even airflow distribution and pressure management within the convective chamber are unique to the present invention. These distinctions clearly demonstrate that Claim 1 is not anticipated by Rohrl. Therefore, the rejection under 35 U.S.C. § 102 should be withdrawn, affirming the patentability of Claim 1 over the cited prior art.